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Abstract. Effects of structural and energetic disorder on nonadiabatic electron transfer (ET) reactions
are discussed theoretically. To account for the sequential as well as the superexchange mechanism of ET
our recent approach is used presented in J. Phys. Chem. A 105, 10176 (2001). The overall charge motion
is characterized by the numerical solution of rate equations for the electronic state populations and an
averaging with respect to the disorder configurations. Introducing a single effective transfer rate which
can be deduced from the experiment the dependence of this rate is discussed on the geometry of the ET
system as well as on the disorder model. The theory is applied to donor–acceptor complexes connected
by oligomers of the amino acid proline. In particular, a pronounced dependence is found of the effective
transfer rate on disorder with respect to the reorganization energy.

PACS. 34.10.+x General theories and models of atomic and molecular collisions and interactions (including
statistical theories, transition state, stochastic and trajectory models, etc.) – 34.30.+h Intramolecular
energy transfer; intramolecular dynamics; dynamics of van der Waals molecules – 31.70.Hq Time-dependent
phenomena: excitation and relaxation processes, and reaction rates

1 Introduction

It is a ubiquitous observation that any electron trans-
fer (ET) reaction in molecular donor–acceptor (DA) com-
plexes is influenced by effects of structural disorder [1,2].
Disorder may alternate the ET through the bridging (B)
units interconnecting the D and the A as well as through
a change of the ET parameters in the D and A unit itself.
Numerous studies addressed this problem (see, e.g. [1] for
a recent overview). The influence of structural disorder on
a simple model DBA–complex has been investigated in [3].
Related studies for molecular wires may be found in [4,5].
Proteins as well as the DNA have been considered in [6]
and [7], respectively.

Typically all these descriptions are based on fluctu-
ating parameters, like the site energies and the inter–
site couplings which are not derived from a microscopic
model. Such a more involved attempt becomes possible if
one combines MD simulations with quantum chemical cal-
culations of the various electronic energies and tunneling
matrix elements (see, for example, Refs. [8,9]). Although
such a treatment is of large methodological interest it often
suffices to introduce normal distributions for the respec-
tive ET parameters.
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In the present paper we will follow this last mentioned
approach but we will not only deal with so–called diag-
onal and off–diagonal disorder, i.e. disorder with respect
to the various site energies of the transferred electron (di-
abatic energies) and the inter–site couplings, respectively.
Instead, disorder with respect to the electron–vibrational
coupling is considered, too. Moreover our studies are fo-
cused on nonadiabatic bridge mediated ET. If the site
energies of the bridge are far away from the D and A
level (some eV above) the ET may be characterized by
two different mechanisms. One leads to a direct (coher-
ent) charge motion from the D to the A and is known as
the superexchange ET. The other one describes sequen-
tial (nonadiabatic) ET from one site of the system to the
neighboring sites. In order to achieve a uniform descrip-
tion with rate expressions accounting for both mentioned
mechanisms we follow our earlier work [10–13].

These our studies are based on a microscopic model
which uses a separation of the electronic states of
the ET system into (localized) diabatic D, B and A levels.
All these levels are augmented to potential energy sur-
faces (PES) which may comprise intramolecular as well as
solvent vibrations. Then, electron–vibrational states in-
troduced in this manner are used to define the electron–
vibrational density matrix and to derive respective equa-
tions of motion. Provided that the vibrational dynamics
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are fast compared to the characteristic time of the over-
all ET reaction the description can be reduced to rate
equations governing the diabatic (electronic site) popula-
tions. However, as a byproduct the correct rates for the
elementary hopping and superexchange transitions are ob-
tained. A proper classification of these mechanisms follows
from a perturbational expansion of the rates with respect
to the inter–site coupling. Since (at least in principal)
the diabatic states are many–electron states and the PES
include all vibrational coordinates, Coulombic effects
among electrons as well as solvent polarizations may be
accounted for.

In references [10,11] we could also demonstrate that for
small integral bridge populations the complicated bridge–
mediated ET reduces to single–exponential kinetics with
a transfer rate which is the sum of the overall sequen-
tial and superexchange rate. As a general result a distinct
change of the overall ET rate with an increasing number
of bridge units has been obtained. It indicates the transi-
tion from a region where the superexchange mechanism of
ET dominates to a region governed by sequential transfer
processes.

The approach was successfully applied to explain the
measurements of reference [14] on DBA–systems with the
bridge units formed by the amino acid proline. It is the aim
of the present paper to extend the mentioned description
of ET by incorporating the influence of static disorder.

Since the rate equations which describe the ET reac-
tion in a given disorder configuration of the DBA–system
are linear we may solve them numerically in comput-
ing the eigenvalues and eigenvectors of the rate matrix.
Both types of quantities determine the complete time–
dependence of the electronic state populations. There-
fore, we may characterize the disorder–averaged ET if
we repeatedly calculate the rate matrix eigenvalues and
eigenvectors for every disorder configuration, and, after-
wards, introduce the respective configuration average (cf.,
e.g. [15]). Additionally, single overall (effective) transfer
rates are introduced to carry out a comparison with ex-
perimentally deduced bridge–length dependent rates. As
already done in [10,11,13] we apply our theory to ET re-
actions through a polyproline chain and relate the results
to the measured data of [14]. However, it is not the inten-
tion of this paper to improve the fit of the measured rates
of [14]. Rather we demonstrate the influence of disorder
on an ET model with parameters deduced from a concrete
experiment.

The paper is organized as follows. In the subsequent
section we shortly comment on the used ET model and
on the way how to compute disorder averaged electron
populations and ET rates. In Section 3 concrete rate ex-
pressions are introduced and the results of our numerical
simulations are explained in detail. The paper ends with
some concluding remarks in Section 4.

2 Electron transfer kinetics

To arrive at rate equations including microscopically
founded rate expressions we start with the Hamiltonian

of the DBA–system. It is written in the standard form
following from an expansion with respect to the local (di-
abatic) electronic states ϕm of the D, the A, and all B
units

HDBA =
∑
m,n

(
δm,nHm(q) + (1 − δm,n)Vmn(q)

)

× | ϕm〉〈ϕn | . (1)

Here, the indices m and n pass through the N bridg-
ing units and the D–site (m = 0) as well as the A–site
(m = N + 1). The meaning of the ϕm depends on the
type of ET. If an excess electron is moving through the
system the ϕm describe the lowest state of the D, B and A
part if this additional electron is added. If ET is initiated
by an optical excitation of the D the state ϕ0 may cor-
respond to the first excited state of the D (but modified
due to the embedding in the ET system). But in any case
all the ϕm have to be considered as many–electron states
(which as already underlined will be not computed in the
present paper). The concrete form of the interstate cou-
plings Vmn depends on the chosen way to introduce the
diabatic states, but in any case, the Vmn have to be con-
sider as a many–electron matrix elements. The vibrational
Hamiltonian Hm include respective potential energy sur-
faces PES Um(q) defined versus a certain set q = {qξ}
of vibrational coordinates. In the most general case those
might be intramolecular as well as solvent coordinates.
As discussed at length in [10] the q can be reduced to in-
tramolecular vibrations if a nonpolar solvent is considered.
However, the latter acts as a heat bath for the intramolec-
ular vibrations and cause their fast vibrational relaxation.
The equilibrium value U

(0)
m of the PES will be identified

with the site energy Em (possibly, the zero–point energy
of all vibrations is included).

Once started with the ET–Hamiltonian, equation (1),
nonadiabatic ET reactions mediated by a network of
B units can be characterized by the following kinetic
equations for the electronic site populations (cf. [10,11])

∂

∂t
Pm = −

∑
n

KmnPn. (2)

The quantities Kmm =
∑

l �=m km→l and Kmn = −kn→m

(for m �= n) are determined by the transition rates km→n

for the transition from site m to site n. (Since the concrete
form of all rates is less important for the following we post-
pone the presentation of respective expressions to Sect. 3.)
The set of kinetic equation (2) guarantees the conserva-
tion of probability (

∑
m Pm = 1) and has to be completed

by the initial condition (usually taken as a complete D
population Pm(0) = δm,0).

2.1 Consideration of disorder

All quantities entering the ET Hamiltonian can be subject
to fluctuations caused by structural and energetic disor-
der. Let us characterize such fluctuations by a set of pa-
rameters y which enters the Hamiltonian, equation (1) and
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which describes a specific energetic and structural config-
uration in the DBA complex. A very basic choice would be
the identification of these parameters with the Cartesian
coordinates describing the spatial arrangement of the D
the A and all bridging units. From this, in principle, would
follow the concrete form of the ET Hamiltonian, equa-
tion (1). A more indirect choice for the set y is the use of
the site energies, the transfer integrals and the electron–
vibrational couplings defining HDBA, equation (1). (If the
transfer proceeds in the high–temperature limit the de-
scription of the electron–vibrational coupling can be re-
duced to the use of the various reorganization energies.)
We will proceed by identifying the set y with the site en-
ergies, the transfer integrals and the reorganization ener-
gies. (By the way, this approach is unavoidable for larger
systems since electronic structure calculations generating
the disorder of the ET–parameters from structural dis-
order cannot be repeated, say 104 times to achieve good
statistics.)

The need to compute disorder averages is caused by
the experimental standard techniques to characterize ET
like the measuring of the fluorescence decay or the ab-
sorbance change of one of the DBA–system parts (cf. [1]).
All the data are ensemble measures and are directly re-
lated to the ensemble (disorder) average of the respective
electronic state populations. In order to compute such
averaged populations the parameter set y will be addi-
tionally labeled by r counting all complexes contained in
the sample volume V . Then, the particular state pop-
ulation Pm(t) related to site m differs for different ET
systems and we write Pm(t; yr). The measured value fol-
lows as the ensemble (configuration) average 〈Pm(t)〉 =∑

r∈V Pm(t; yr)/nDBAV (nDBA is the volume density of
the DBA complexes in the probe).

There are different ways to account for disorder when
discussing dynamic phenomena in molecular systems. A
direct consideration would be the simulation of the dy-
namics for every member of the disordered ensemble fol-
lowed by the ensemble average of the dynamics. (Of course
such a direct numerical averaging can be avoided if dis-
order averaged dynamic equations can be derived.) If the
solution of the dynamic equations can be constructed di-
rectly, it only remains to introduce the ensemble average
with respect to this solution. This is the way we will fol-
low in the present paper. It becomes possible since the
rate equations taken to simulate the ET reaction are linear
and, consequently, can be formally solved via the eigen-
values and eigenvectors of the rate matrix. This approach
is not new and has been extensively used in, for exam-
ple, discussing excitation energy dynamics in polymeric
chains [15].

Once the eigenvalues κ(α) and eigenvectors em(α) of
the rate matrix Kmn have been determined the solution
of equation (2) reads as

Pm(t) =
∑

α

c(α)em(α)e−κ(α)t. (3)

According to the dimension of Kmn the index α runs from
0 to N + 1. The κ(α) are assumed to be ordered with

increasing magnitude starting with κ(0) = 0. Further-
more, we proceed from the assumption that the eigen-
vectors em(α) are normalized. The set of arbitrary pref-
actors c(α) has to be determined by the initial condition
for equation (2). Noting that the rate vanishes for α = 0
it follows

Pm(t) = Pm(∞) +
∑
α>0

c(α)em(α)e−κ(α)t, (4)

where the Pm(∞) = c(0)em(0) determine the asymptotic
value of the population at site m.

Every eigenvalue and every component of the respec-
tive eigenvector as well as the prefactor c(α) depend on the
parameter set y characterizing the disorder. Therefore, we
can introduce the disorder averaging of the populations
according to

〈Pm(t)〉 = 〈Pm(∞)〉
+

1
V nDBA

∑
r∈V

∑
α>0

c(α; yr)em(α; yr)e−κ(α;yr)t. (5)

The notation makes obvious that the averaging can be
carried out for every time–dependent part of the popula-
tion independently. This may become of some advantage if
the κ(α) differ strongly and one is interested in the long–
time behavior only. Then, in equation (5) the complete
summation with respect to α may be restricted to the
interesting subset.

2.2 Effective transfer rate

Equation (5) demonstrates that the redistribution of elec-
tron population described by the 〈Pm(t)〉 does not follow
a multi–exponential law. Nevertheless, it is of some ad-
vantage when, for example, studying the dependence of
the ET on the DBA geometry (e.g. on the length of the
bridge in the case of a linear DBA complex), to fit the pop-
ulation by a single–exponential law with an effective ET
rate k

(eff)
ET . Concentrating on the decay of the D popula-

tion, we choose the following ansatz

〈PD(t)〉 = 〈PD(∞)〉+ (1− 〈PD(∞)〉) exp
(
−k

(eff)
ET t

)
. (6)

The right–hand side coincides with the correct time–
dependence of the disorder averaged D–population for
t = 0 and t = ∞, but interpolates it in between by a
simple exponential time–dependence. Therefore, it is just
the definition of k

(eff)
ET . The inverse of k

(eff)
ET can be easily

obtained by a time–integral

1

k
(eff)
ET

=

∞∫
0

dt
〈PD(t)〉 − 〈PD(∞)〉

1 − 〈PD(∞)〉 · (7)

The use of this mean (effective) transfer rate corresponds
to the well–known approach in the theory of reaction ki-
netics where a complex transition process is described by
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Fig. 1. Energy level scheme for the regular reference
D–polyproline–A system according to reference [10]. The
thick bars stand for the electronic site energies Em (m =
D, B1, ...BN , A). The energy gap ∆EDB between the D and ev-
ery molecule of the polyproline bridge amounts to 0.21 eV, and
for the gap between the D and the A we have ∆EDA = 1.7 eV.
All site energies of the bridge units are identical (for the regular
system). Respective values for the transfer integrals and reor-
ganization energies are indicated in the graph. The model sys-
tem studied in parallel to the D–polyproline–A system mainly
deviates by assuming identical parameters for the D and the
A (vanishing driving force ∆EDA, and VDB = VBA = 0.06 eV
as well as λDB = λBA = 0.8 eV).

a single mean first–passage time (see, for example [16,17]).
In a similar way a mean relaxation time of electron trans-
fer processes in regular and stochastic fields can be intro-
duced [18].

If we insert equation (5) into equation (7) it follows

k
(eff)
ET =

∑
p∈V

∑
β>0

c(β; yp)eD(β; yp)

∑
r∈V

∑
α>0

c(α; yr)eD(α; yr)/κ(α; yr)
· (8)

It is obvious that these quantities have to be dis-
tinguished from the simply averaged rate 〈kET〉 =∑

r∈V κ(1; yr)/V nDBA, where κ(1; yr) characterizes the
slowest part of the ET for the given disorder configuration.

3 Numerical results

In the following we will concentrate on a linear ar-
rangement of the D, the N bridge units, and the A
(cf. Fig. 1) as it is given by the D–polyproline–A sys-
tem studied experimentally in [14]. The DBA complex
is formed by two metal compounds with Ru(II) as
the D and Co(III) as the A as well as an oligomer
of the aminoacid proline. The whole structure reads
[{(bpy)2Ru(II)L}·(Pro)nCo(III)(NH3)5]3+. It has been
discussed at length in references [10,11] that this system
nicely demonstrates the transition of the ET from the su-
perexchange mechanism to the sequential one when en-
larging the bridge.

Although no comments have been given in [14] on the
possible influence of disorder we will use this system here
to demonstrate the importance of energetic disorder when

discussing ET reactions. The system attracts particular
interest since it shows the transition from superexchange
to sequential ET. And, an additional advantage is that
the ET proceeds in the high–temperature limit. Since the
two ET regimes are dominated by different sets of ET pa-
rameters we expect a different influence of disorder effects.
The obtained behavior in the experimentally studied D–
polyproline–A is confronted by the ET in a fictitious sys-
tem (model system) where the D and the A couple with
identical parameters to the bridge and where the driving
force ∆EDA vanishes (all parameters can be found in the
caption to Fig. 1).

As it was shown in [10,11] the ET in D–polyproline–
A is of the nonadiabatic type and takes place in a re-
gion where quantum effects of the nuclear motion are
absent (high–temperature limit). Therefore, one type of
rate–expressions entering Kmn in equation (2) describes
sequential ET between neighboring sites

k(seq)
m→n =

2π

�
|Vmn|2Dmn(∆Emn). (9)

The quantity Dmn is the (combined Franck–Condon
weighted and thermally averaged) density of states and
∆Emn = Em − En denotes the driving force for the tran-
sition from site m to site n. In the high–temperature limit
Dmn becomes of the Marcus–type and reads

Dmn(∆Emn) =
1√

4πλmnkBT

× exp
{
− (∆Emn − λmn)2

4λmnkBT

}
· (10)

The reorganization energy λmn may be written as

λmn =
1
2

∑
ξ

ω2
ξ

(
q
(m)
ξ − q

(n)
ξ

)2

(11)

provided that the ET couples to (mass–weighted) normal–
mode coordinates whose frequencies ωξ do not change with
the change of the electronic diabatic state level ϕm (q(m)

ξ

and q
(n)
ξ denote respective equilibrium positions).

Besides the rates of sequential transfer which couple
the D with the first proline molecule in the B, the A with
the last one, and neighboring prolines within the B, there
is a direct coupling between D and the A via the superex-
change mechanism of ET. The respective rate expression
reads

k
(super)
D→A =

2π

�
|TDA|2DDA(∆EDA) (12)

where DDA is given by equation (10) (including the reor-
ganization energy λDA) and the superexchange coupling
matrix element follows as (cf., e.g., [10,11])

TDA =
VD,1V1,2...VN−1,NVN,A√

∆E1D∆E1A∆E2D∆E2A...∆END∆ENA

· (13)

The various driving forces ∆EmD and ∆EmA are the
result of an additional approximation replacing the
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Fig. 2. Time–dependence of the donor population for the case of diagonal disorder in the D–polyproline–A system. (a) Bridge
with a single proline molecule, (b) bridge with 18 proline molecules (for further parameters see inset and Fig. 1). The configuration
averaged population 〈PD〉, the population of the ordered reference system PD, and the upwards and downwards mean deviations
are shown.

correct electron–vibrational spectra by single energy dif-
ferences (for more details see [10]). Furthermore, the
Frank–Condon factors accompanying the coupling matrix
elements have been also removed. Finally, we note that all
rates obey the detailed balance law

kn→m = exp
[
−∆Emn

kBT

]
km→n. (14)

3.1 Description of disorder

As already stated the easiest approach to account for
disorder would be the assumption that every parame-
ter entering the rate formulas of the preceding section
may fluctuate according to a Gaussian distribution around
the ensemble average. Since nonadiabtic ET in the high–
temperature limit is considered the fluctuating parameters
comprise the site energies Em, the inter–site coupling ener-
gies Vmn and the reorganization energies λmn. The (static)
fluctuations of the reorganization energies may look some-
what unusual. But equation (11) indicates that these fluc-
tuations are caused by structural fluctuations too, namely
by those leading to an alteration of all quantities describ-
ing the coupling of the transferred electron to the nuclear
motion.

3.2 Influence of disorder on the time dependence
of the populations

In order to illustrate the disorder influence on the time
dependence of the ET the donor population is singled out
imagining an experiment where the decay of this popu-
lation is directly measured e.g. via fluorescence decay or
change of absorbance of the D. Besides plotting the en-
semble average 〈PD〉 of the donor population the stan-
dard deviation will be indicated at every time step, too.

Since a quantity is considered which decays nearly expo-
nentially it is necessary to distinguish between the upper
(∆P

(+)
D (t) ≡ σ+(t)) and the lower (∆P

(−)
D (t) ≡ σ−(t))

standard deviations. They are defined as

∆P
(±)
D (t) ≡ σ±(t)

=

{
1

V n
(±)
DBA

∑
r

(
P

(±)
D (t; yr) − 〈PD(t)〉

)2
} 1

2

, (15)

where the summation concerns all those subsystems
where the actual population either deviates upwards
(P (+)

D (t; yr)) or downwards (P (−)
D (t; yr)) from the mean

value (n(±)
DBA denotes the respective volume densities). To

get an impression of the scattering of the donor popu-
lation within the ensemble besides 〈PD〉 we also draw
〈PD〉 + ∆P

(+)
D and 〈PD〉 − ∆P

(−)
D . The respective stripes

around 〈PD〉 (cf. Figs. 2 to 5) show the region where the
majority of D populations decays. The result PD for the
regular (without disorder) D–polyproline–A system or reg-
ular model system is given as a reference. Both quantities
follow from using the ensemble averages of all ET param-
eters involved.

Let us start with the case where all couplings and reor-
ganization energies are fixed and only fluctuations of the
site energies are allowed. Figures 2 to 5 show the results for
the D–polyproline–A system as well as for the model sys-
tem. A general observation would be that disorder favors
a slower decrease of the D population at long times than
the regular case predicts. This behavior is independent of
the concrete system and the extension of the bridge.

DBA complexes bridged by one to three proline
molecules are dominated by the superexchange ET
(Figs. 2a and 4a). The transfer of an electron along a pro-
line chain with more than three units can be chiefly at-
tributed to the hopping mechanism (see Figs. 2b and 4b).
As it has to be expected the proline system will barely
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Fig. 3. Time–dependence of the donor population for the case of diagonal disorder in the DBA model system. (a) Bridge with a
single unit, (b) bridge with 18 units (for further parameters see inset and Fig. 1). The configuration averaged population 〈PD〉,
the population of the ordered reference system PD, and the upwards and downwards mean deviations are shown.

0 2e-09 4e-09 6e-09 8e-09

time [s]

0.0 0.0

0.1 0.1

0.2 0.2

0.3 0.3

0.4 0.4

0.5 0.5

0.6 0.6

0.7 0.7

0.8 0.8

0.9 0.9

1.0 1.0

P
D

< PD > - σ-

PD

< PD >

< PD > + σ+

D - (Pro)1 - A

disorder in reorganisation energies
(σ = 10% of parameters)

(a)

0 2e-04 4e-04 6e-04 8e-04

time [s]

0.0 0.0

0.1 0.1

0.2 0.2

0.3 0.3

0.4 0.4

0.5 0.5

0.6 0.6

0.7 0.7

0.8 0.8

0.9 0.9

1.0 1.0

P
D

PD

< PD >

< PD > - σ-

< PD > + σ+

D - (Pro)4 - A

disorder in reorganisation energies
(σ = 10% of parameters)

(b)

0 1.0e-03 2.0e-03 3.0e-03 4.0e-03 5.0e-03 6.0e-03

time [s]

0.0 0.0

0.1 0.1

0.2 0.2

0.3 0.3

0.4 0.4

0.5 0.5

0.6 0.6

0.7 0.7

0.8 0.8

0.9 0.9

1.0 1.0

P
D

PD

< PD >

< PD > - σ-

< PD > + σ+

D - (Pro)10 - A

disorder in reorganisation energies
(σ = 10% of parameters)

(c)

0 0.002 0.004 0.006 0.008

time [s]

0.0 0.0

0.1 0.1

0.2 0.2

0.3 0.3

0.4 0.4

0.5 0.5

0.6 0.6

0.7 0.7

0.8 0.8

0.9 0.9

1.0 1.0

P
D

PD

< PD >

< PD > - σ-

< PD > + σ+

D - (Pro)18 - A

disorder in reorganisation energies
(σ = 10% of parameters)

(d)

Fig. 4. Time–dependence of the donor population for the case of disorder with respect to the reorganization energies in
the D–polyproline–A system. (a) Bridge with a single proline molecule, (b) bridge with four proline molecules, (c) bridge
with 10 proline molecules, (d) bridge with 18 proline molecules (for further parameters see inset and Fig. 1). The configuration
averaged population 〈PD〉, the population of the ordered reference system PD, and the upwards and downwards mean deviations
are shown.
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Fig. 5. Time–dependence of the donor population for the case of disorder with respect to the reorganization energies in the
DBA model system. (a) Bridge with a single unit, (b) bridge part with four units, (c) bridge with 10 units, (d) bridge with
18 units (for further parameters see inset and Fig. 1). The configuration averaged population 〈PD〉, the population of the ordered
reference system PD, and the upwards and downwards mean deviations are shown.

be influenced by disorder for those bridge lengths where
the superexchange contributes the most to the ET process
(Fig. 2a). ET through longer proline chains is dominated
by the sequential ET and shows a stronger dependence
on disorder. In contrast to the polyproline system, the
main contribution in the model system comes from the se-
quential transfer for any number of bridge molecules (cf.
Figs. 3 and 5). Regarding the dependence on the number
of bridge units, the ET in the superexchange–dominated
proline systems will be faster by one or two orders of mag-
nitude compared to that in the model system. For a larger
number of bridge molecules the situation will change and
the electron transport in the proline system will lag behind
that of its model counterpart. For all the examples studied
so far 〈PD(t)〉 and PD(t) cross each other at times that
vary between 1/κ(1) and 1/3κ(1) given for the rigid sys-
tem. The greater the disorder the slower does the occupa-
tion of the donor site decline after the crossing point, and
most prominently so for long–range ET (compare graphs
in Fig. 2).

The site-energy gap of ∆EDA = 1.7 eV in polyproline
causes the donor to be depopulated virtually entirely. Due
to the missing driving force (∆EDA = 0 eV) in the model
system it results PD(∞) = 0.5. Furthermore, apart from
the timescales, there is no principal difference in how the
PD– and 〈PD〉-curves of the model systems run for the
case with a single bridge (see Fig. 3a) and the case with
18 bridge units (Fig. 3b). This has to be expected since all
chain lengths are dominated by the hopping mechanism.

Interestingly there is only a minor influence of fluc-
tuating inter–site couplings on the ET (we do not give
concrete data here but refer to Fig. 7 explained in the
following section). Therefore we will turn to an investiga-
tion of the influence of fluctuating reorganization energies.
Figures 4 and 5 show a sequence of diagrams for DBA com-
plexes with a single, with four, ten, and eighteen proline
molecules whose every reorganization energies have been
generated by normal distributions with standard devia-
tions of 10% of the respective mean value (cf. Fig. 1).
For all numbers of bridge units the run of the curves
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Fig. 6. Bridge–length dependence of the effective transfer rate, equation (8) for the case of diagonal disorder (with standard
deviation σ). (a) D–polyproline–A system, (b) DBA model system (for the used parameters see inset and Fig. 1).
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Fig. 7. Bridge–length dependence of the effective transfer rate, equation (8), for the case of off–diagonal disorder (with standard
deviation σ). (a) D–polyproline–A system, (b) DBA model system (for the used parameters see inset and Fig. 1).

related to the disorder (ensemble) average are distinct
from that of the regular system. This behavior is valid for
the D–polyproline–A system as well as the model system.
Such an influence of disorder with respect to the electron–
vibration coupling has also to be expected when discussing
the effective transfer rates defined in equation (8). This
will be the subject of the following section.

3.3 Disorder effects on the length dependence
of the effective transfer rate

The dependence of the effective transfer rate k
(eff)
ET ,

equation (8) on the extension of the bridge is shown in
Figures 6 to 8. As in the ordered DBA–system the effec-
tive rate changes in its bridge–length dependence if the
the number of bridge units reaches four (D–polyproline–
A system, cf. Figs. 6a to 8a) or two (model system, cf.
Figs. 6b to 8b), indicating the transition from the su-
perexchange dominated ET to sequential ET. However,
for any number of bridge units k

(eff)
ET is smaller than the

rate of the respective rigid system. This is synonymous to

a slower asymptotic population redistribution from the D
to the A.

Concentrating first on fluctuations of the site energies
(see Fig. 6) the influence of disorder on the proline systems
is stronger than that on the model system. And follow-
ing from the disorder influence on the time–dependence
of the populations (cf. Figs. 2 and 3) the effective rate de-
creases when increasing the strength of site–energy fluc-
tuations. In contrast to this behavior the influence of dis-
order in the coupling energies is negligible as can be seen
from Figures 7. Only a very slight affection by disorder
appears in the superexchange–dominated regions of the
D–polyproline–A system.

Finally, Figures 8 display the bridge–length depen-
dence of the effective ET rate as influenced by disorder
with respect to the reorganization energies. Both types of
studied systems are notably affected by disorder in the
reorganization energies. The ideal D–polyproline–A refer-
ence system shows a kink at the transition point where
superexchange–dominated ET reactions are replaced by
those dominated by hopping transitions (see top of Fig. 8
and also [10,11]). In contrast, the disordered curves run
rather smoothly. Since such a smooth transition for the
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Fig. 8. Bridge–length dependence of the effective transfer rate, equation (8) for the case of disorder with respect to the reor-
ganization energies (with standard deviation σ). (a) D–polyproline–A system, (b) DBA model system (for the used parameters
see inset and Fig. 1).

length–dependence of the rate has been observed in the
experiment [14] the present incorporation of disorder im-
proves the calculation published in the foregoing pa-
pers [10,11].

All effects of disorder for small bridges (left from the
kink) have to be attributed to the reorganization en-
ergy λDA, which is directly related to the dominating su-
perexchange mechanism. As soon as the bridge is enlarged
to reach the hopping dominated transfer, the relevance of
disorder effects is swapped between the reorganization pa-
rameters. Disorder in λDA does not contribute to a reduc-
tion in the effective transfer rate, but fluctuations in all
other reorganization energies do.

Figure 8b also includes a kink at two bridge units. This
is due to the missing bridge parameters at one bridge unit,
which disallows a direct comparison with systems that in-
clude more than one bridge unit. Therefore, a smoothing
by disorder cannot be expected.

4 Conclusions

The influence of energetic disorder on nonadiabatic ET
reactions in donor bridge acceptor systems has been dis-
cussed theoretically. The approach is based on rate equa-
tions for the electronic state populations which account for
the superexchange type of ET reaction as well as the se-
quential type. The solution of the rate equations has been
achieved in determining the eigenvalues and eigenvectors
of the rate matrix. The remaining configuration (disor-
der) averaging has been carried out with respect to the
resulting multi–exponential form of the electronic state
populations. Since the high–temperature limit of nonadia-
batic ET has been considered structural disorder could be
mapped on fluctuating site–energies, inter–site couplings
and reorganization energies. The incorporation of the lat-
ter quantities is in contrast to other studies on the influ-
ence of disorder on ET reactions.

Numerical calculations have been presented for
the D–polyproline–A system [{(bpy)2Ru(II)L}·(Pro)n

Co(III)(NH3)5]3+ with a varying number of proline bridge
molecules as studied experimentally in [14] and theoret-
ically (without the account of disorder) in [10,11]. The
results are confronted with those of a fictitious model sys-
tem with vanishing driving force between the donor and
the acceptor and similar coupling of both to the terminal
units of the proline chain.

A single effective transfer rate has been introduced to
study the influence of disorder on the bridge–length de-
pendence of the ET rate. This effective rate is different
from a simple configuration averaged rate and properly re-
flects the time–asymptotics of the ET reaction. It shows a
remarkable dependence on (statically) fluctuating reorga-
nization energies, especially for the D–polyproline–A sys-
tem. Furthermore, the effective rate in its dependence on
the bridge length is characterized by a smooth transition
from the region where the superexchange mechanisms of
ET dominates to the region governed by sequential transi-
tion processes. This behavior coincides much better with
the observations than that offered within a theory neglect-
ing any influence of disorder.
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